Document 2

Mutation and Multiple Alleles

Multiple alleles

Multiple alleles are gene alternatives, such as the ABO blood type in the human population.

• Mutation: is a change in the nucleotide sequence of DNA.

- Mutations may occur in genes or chromosomes:
- Gene mutation: is a change in the nucleotide sequence of the DNA within a gene.
- Chromosome mutation: affects the number or structure of chromosomes.(To be discussed in chapter 5)
- DNA has coding (30,000 genes per diploid cell) and non-coding sequence of nucleotides (95% of the DNA).
- Only mutations in the coding region of the DNA may alter the function of the protein.

I. Types of Gene Mutation

Point Mutation:

- Affects 1 nucleotide

Stetched Mutation:

 Affects hundreds or thousands of nucleotides.

Types of Point Mutations:

Doc.b, p.60, shows different types of point mutations and their consequences.

type of mutation	non-transcribed DNA strand of a normal gene and corresponding amino acids	non-transcribed DNA strand of the mutant gene and corresponding amino acids	effect of the mutation
substitution	Pro - Glu - Thr	Pro - Val - Thr	missense altered polypeptide
	Pro - Glu - Thr	Pro - Glu - Thr	silent no detectable change
	Pro - Glu - Thr	Pro - Stop -	nonsense incomplete polypeptide
deletion	Tyr - Thr - Thr	Tyr - Pro - Arg	frame-shift altered polypeptide
insertion		Tyr - Asp - His	frame-shift altered polypeptide

Doc. b Main types of point mutations and their consequences. The non-transcribed DNA strand (coding strand) gives a quick and direct reading of the messenger RNA by just replacing thymine (T) with Uracil (U).

1- Substitution: One nucleotide is replaced by another.

Consequence (effect):

1.1- Missense mutation: GAG (Glu) → **GTG (Val)**

- The change in 1 nucleotide leads to a **different codon** which codes for a different amino acid.

⇒ the polypeptide (protein) is altered.

the phenotype will be affected.

1.2- Silent Mutation: GAG (Glu) → GAA (Glu)

- The change in 1 nucleotide gives a codon that codes for the same amino acid .

⇒no change in protein.

⇒ the phenotype will not be affected.

1.3- Non-sense Mutation: GAG (Glu) → TAG (stop)

- The change in 1 nucleotide causes the formation of a stop codon.

- ⇒ formation of incomplete (truncated) non-functional protein.
- ⇒ phenotype will be affected.

2- Deletion: One nucleotide is removed.

- Consequence:
- Frame shift (backward): production of altered protein ⇒ affecting the phenotype.

deletion Tyr - Thr - Thr Tyr - Pro - Arg frame-shift altered polypeptide

3- Insertion: One nucleotide is added.

- > Consequence:
- Frame shift (forward): production of altered protein > affecting the phenotype.

insertion

-ACC-ACG - A/ ... TAC-GAC-CAC-GA/ ...

frame-shift altered polypeptide

II. Genes and Multiple Alleles:

 Genetic polymorphism: is the presence of many alleles for the same gene, this gene is called polymorphic gene).

example: blood type, eye color...

- Cause of genetic polymorphism: mutation of the wild allele (normal allele).
 - -wild-type allele: is the allele that codes for the most common phenotype in a population.

- Example of multiple alleles in humans is: ABO blood group system
- ABO system has three different alleles: A, B and O.
- It is characterized by the presence of O, A or B molecules on the surface of red blood cells.
- O, A and B molecules all have the same basic component called substance H, but they differ by the presence or absence of a sugar molecule.
- Document 1 shows a schematic diagram for different blood groups having different molecules O, A and B.

→Blood group A:

\rightarrow Blood group AB:

→Blood group O:

